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By an enumeration study, we show that the energy distributions of a lattice protein sequence on all possible
compact lattice configurations can be approximated by the energy distribution of shuffled sequences on a given
lattice structure. We also show that the random energy model �REM� gives a good analytical approximation for
the energy distribution of shuffled sequences on lattice structures. For real proteins, when a gapped threading
method is used, REM calculations systematically underestimate the mean value of the energy distributions. We
found that this discrepancy can be roughly compensated by a linear correction obtained from empirical fits.
This result can be used to greatly reduce the computational effort in protein threading calculations.
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I. INTRODUCTION

The energy distribution of protein molten globular states
�1� is important for understanding protein folding dynamics
�2–4�. Wolynes and co-workers proposed a “funnel”-like en-
ergy landscape to explain the fast folding process of natural
proteins �2�. According to this assumption, the ability of a
protein finding its native configuration �5� correlates with the
energy difference between the energy of native state and the
average energy of its molten globular states. The energy dis-
tribution of a protein’s molten globular states is the density
of states of the given polypeptide in all physical compact
configurations. However, for a real protein, it is an outstand-
ing challenge to map out this distribution, because the con-
formation space of a real protein is so large that it is not
feasible to enumerate all the possible compact structures.
Any current method in sampling protein energy distributions
will only be able to select a very small fraction of the entire
landscape. Therefore, the resulting energy distribution might
not be representative. On the other hand, amino acid se-
quence shuffling is commonly used to study the significance
of protein sequence-structure compatibility �Z score� �6,7�.
When a protein sequence is put onto its native structure, we
expect a significantly lower energy than putting the protein
sequence onto a random structure. However, if we have a
scrambled sequence, it ought not matter whether the struc-
ture adopted is the native structure of the unshuffled se-
quence or a random structure. Thus, by using randomly
shuffled sequences, we should be able to estimate the energy
distribution of a protein’s molten globular states. The results
should be insensitive to which structure we choose and one
convenient way is to impose the protein’s “shuffled” se-
quences onto its native structure �8�.

In this paper, we want to investigate how well the energy
distribution of the shuffled sequences represent the energy
distribution of the various molten-globule states for a given
protein sequence. Using a simple lattice HP model �9–13�,
we compare the energy distributions from exact enumeration
and the “shuffled sequence” scheme. Our study shows that
the energy distribution for a given sequence on all possible
three dimensional lattice structures can be effectively repro-
duced by shuffling the amino acid sequence while keeping its

conformation as the native structure of the protein. This ob-
servation is useful because it is much easier to model struc-
tural evolution in sequence space than following the struc-
tural evolution of a connected chain in real space. Moreover,
we found that the random energy model �14� �REM� gives
good estimates for the energy distribution for shuffled se-
quences. Earlier work �15� has established this for the case of
gapless threading onto a given structure. Here, we showed
that good estimates can still be obtained even when a gapped
threading method is involved. This makes it possible to es-
tablish a fast prescreening method in structural threading ap-
proaches for protein structure prediction.

II. THE LATTICE HP MODEL

In the lattice HP model, a polypeptide chain is modeled
as a self-avoiding random walk on a square or cubic lattice.
Amino acids are divided into two groups: hydrophobic �H�
residues or polar �P� residues. Each of the residues occupies
a site on a lattice. For a given lattice polypeptide chain con-
figuration, those residue pairs that are geometrical neighbors
but not adjacent in sequence are considered to be “in con-
tact,” and a contact energy is assigned. We use the energy
scheme proposed by Chan and Dill �11,12� where contact
energy for H-H residues are 1, and all other kinds of contacts
are assigned energy 0.

In this paper, we use a 3�3�3 cubic lattice which had
been popular in previous studies �16–18�. For this lattice HP
model, it is possible to enumerate all the compact structures
that a HP sequence can have. Using the HP interaction
scheme, a lattice protein sequence can be represented by a
sequence vector qi �qi=1 if the ith residue is hydrophobic,
otherwise, qi=0�. The lattice configuration can be repre-
sented by a “contact matrix” Ci,j �Ci,j =1 if ith residue and jth
reside are in contact, otherwise Ci,j =0�. The energy of a
given polypeptide configuration can be written as

E = �
ij

ci,jqiqj . �1�

According to this contact energy scheme, two lattice con-
figurations are considered to be the same if they have a com-
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mon contact matrix. �Here we consider two configurations
with reverse labeling symmetry as two different configura-
tions if their contact matrices are different.� There are
103 346 distinct contact matrices on a 3�3�3 cubic lattice.
A lattice HP sequence is consider to be “proteinlike” if it can
be mapped onto a unique lattice configuration which gives
the highest number of H-H contacts among all the 103 346
different structures. On a 3�3�3 cubic lattice, there are 227

different HP sequences. Through the enumeration of the en-
ergies of all these sequences on their possible configurations,
we found that only 8140 444 of them are proteinlike.

III. SEQUENCE SHUFFLING SCHEME

For a given proteinlike sequence, its energy distribution
can be obtained by mapping the sequence onto all the
103 346 cubic lattice structures. For comparison, we also cal-
culated the energy distribution by randomly shuffling the se-
quences but keeping the structure as the native structure of
the given sequence. As an example, Fig. 1 shows the com-
parison of the energy distributions from exact enumeration
and the shuffled scheme for two protein-like sequences. As
one can see from Fig. 1, the energy distributions of the lattice
proteins are closely reproduced by random sequence shuf-
fling. In order to get a good statistics, we randomly chose
1330 different sequences which fold on different lattice con-
figurations from the 8140 444 proteinlike HP sequences for
our study. We calculate the mean values and standard devia-
tions of each chosen sequence using both structural enumera-
tion and sequence shuffling. The results are shown in Figs.
2�a� and 2�b�. From Fig. 2, we can see a linear correlation
between the distributions from the two methods. This indi-
cates that the energy distribution of lattice proteins can be
effectively reproduced by the sequence shuffling method.

In this paper, we enumerate only the maximally compact
conformations on a 3�3�3 lattice. However, such maxi-
mally compact conformations may not always be the true
ground-state structure when conformational search is not re-
stricted and extended to all accessible lattice conformations
�9�. In this regard, the complete density of states �instead of
the one restricted to the 3�3�3 conformations here� esti-
mated, for example, by Monte Carlo sampling would be
more relevant and will be the subject of further studies. One
should also note that in the 3�3�3 lattice model there is
only one buried residue while the other 26 residues are all
exposed to solvent. In real proteins, much higher ratio of
buried residues is observed. It will be interesting to see if our
conclusion for the 3�3�3 lattice model can be generalized
to more realistic protein models.

FIG. 1. �Color online� Comparison of energy distributions
from structural enumeration and sequence shuffling. Two lattice
proteins sequences on 3�3�3 lattice are selected for this study.
�Lattice protein A:011010001111010110110100001, lattice protein
B:011011000010010100000011001.� For each case, 103 346 �the
same number as all distinct lattice structures� shuffled sequences are
generated in each for this comparison.

FIG. 2. The comparison of �a� average energy and �b� RMSD
from exact structural enumeration and sequence shuffling. 1330 dif-
ferent lattice protein from a 3�3�3 cubic lattice were selected for
the study. Each of these sequences were shuffled to generate
103 346 randomized sequences. The energies of these shuffled se-
quences on the corresponding native configuration were collected to
calculate energy mean and RMSD. For each of the selected se-
quence, we also enumerate all possible 3�3�3 lattice configura-
tions to get energy mean and RMSD. The unit for all axes in this
figure is the number of H-H contacts.
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IV. RANDOM ENERGY MODEL

The REM, introduced by Derrida to study spin glass �14�,
has been widely used to study the thermodynamical proper-
ties of polymers and proteins �2,18–22�. It has been shown
that the energy distribution for the shuffled sequences can be
analytically estimated using the REM approximation �15,18�.
In particular, Mirny et al. �15� have shown that the energy
distribution of the shuffled sequence on real protein struc-
tures in gapless threading can be approximated by REM. In
this paper, we show that REM is also a good model to de-
scribe the shuffled sequence for all protein like sequences on
the 3�3�3 lattice. However, we found that the REM sys-
tematically underestimates the average threading scores for
the shuffled sequences on real protein structures if a gapped
threading method is used.

In REM model, the energy distribution of random shuffled
sequences is approximated by a Gaussian function

P�Es� =
1

�2��2
e�−�Es − Eave�2/2�2� , �2�

where Eave is the average of the distribution and � is the root
mean square deviation. Because we are considering only
pairwise contact interactions, Eave and � can be calculated as
�15�

Eave =
C

Ctotal
�
i,j

Ui,j �3�

and

� = �C� 1

Ctotal
�
i,j

Ui,j
2 −

1

Ctotal
2 ��

i,j
Ui,j	2
1/2

, �4�

where C is the total number of contacts in the configuration,
and Ctotal is the total number of possible pairwise contacts
between residues. Ui,j is the contact energy of residue i and
residue j if they are in contact.

Figure 3 shows that the energy distribution of all the pro-
teins in the 3�3�3 lattice calculated using REM in com-
parison with the results from shuffled sequences. The aver-
age H-H contact from shuffled sequence is in good
agreement with the REM estimation as one can see from Fig.
3�a�. The root mean square deviation �RMSD� from the two
methods are also similar. These results indicate that the REM
can provide good estimates of the energy distribution for
shuffled sequences in the lattice model.

When gaps are permitted in the threading process, the
resulting distribution does not obey the REM estimation.
This is because, in the process of optimizing the sequence-
structure fitness in the alignment process, bias was intro-
duced toward the native structures. Fortunately, because the
shuffling process completely destroy any correlation between
the given sequence and structure, the chance for a threading
method to find a long segment of good alignment are very
small. Thus, we expect that the overall distribution �in terms
of mean value and root mean square deviation� using a
gapped threading method should still be correlated with the
REM estimate. We chose 100 protein domains from the
ASTRAL �23� database for investigation. For each of the 100

proteins, we calculated the mean value of the shuffled se-
quence’s energy distribution using a gapped threading �8�
approach as well as the REM approach. In our threading
method, pair-wise contact energy between residues were cal-
culated using a simplified Miyazawa–Jernigen matrix
�24,25�. The total threading energy is the summation of con-
tact energies from each residue-residue pair. The correlation
between the two distributions �calculated using REM and
actual sequence shuffling� is shown in Fig. 4. The calcula-
tions show that the mean value of the scores from the thread-
ing approach is systematically higher compared with the
REM estimated value, because the threading method can op-
timize the alignment of sequence and structure to find the
optimum conformation energy. However, it is interesting to
note that the difference between the REM and threading
score can be fitted by a linear line as shown in Fig. 4. There-
fore, this difference can be empirically corrected using this
fitting result.

V. APPLICATION IN THREADING CALCULATIONS

The result shown in Fig. 4 would be useful for structural
threading studies which involves the calculation of average

FIG. 3. The comparison of �a� average energy and �b� RMSD
from REM estimation and sequence shuffling on a 3�3�3 cubic
lattice. The lattice proteins used are the same as those in Fig. 2. The
unit for all axes in this figure is the number of H-H contacts.
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score Eave for shuffled sequences �8�. As has been shown in
the above lattice studies, the energy distributions for shuffled
sequences is similar to the energy distributions of lattice pro-
teins in compact configurations. Therefore, it is reasonable to
believe that the Eave calculated using shuffled sequence for a
real protein represent the average energy for molten globular
states in protein folding process. Thus for a threading method
using a pairwise interaction scheme, the relative energy
Erelative=Ethreading−Eave, where Ethreading is the threading score
using the original sequence, measures the energy difference
between the native state and the molten globular state.
Erelative has been shown to be a better scoring function in
determining the fitness of sequence-structure pairs �8�. Since
the calculation of average score Eave is the most time-
consuming process, the speed of gapped threading methods
can be increased significantly if Eave is estimated analytically
using REM. Even though the REM estimates may not be
exact, the effects of such inaccuracy on the result of thread-
ing is negligible if the REM calculation is used as an initial
screening tool. Thus, although the REM calculation is not

accurate enough to distinguish high score sequence-structure
pairs, it is good enough to distinguish low score sequence-
structure pairs from high score sequence-structure pairs. In
genome-wide threading studies, an overwhelming majority
of sequence-structure pairs have average scores Eave far be-
low the threshold value beyond the errors of the REM. The
REM calculation can be used to screen out such low score
alignments, so that more accurate Eave calculations are used
to investigate only the most promising sequence-structure
pairs.

As an example, we applied this prescreening technique in
our threading method �8� for genomic scale search. In our
threading approach, we use the relative energy Erelative in-
stead of the Z score as scoring function for measuring
sequence-structure fitness. A given query protein sequence is
threaded on a representative structure set which consist of
more than 13 000 PDB structures. Before this prescreening
technique was developed, for each sequence-structure pair,
20 shuffled sequences were generated to calculate Eave due to
limited computational resources. Thus, without prescreening
process, 21 pair-wise threading calculation has to be per-
formed to generate Erelative.

With the prescreening process, an estimated relative score
Eestimate is calculated using the REM model. Thus, there is
only one pair-wise threading calculation needed �to calculate
Ethreading� for each sequence-structure pair. All protein struc-
tures in the representative database are ranked according to
their corresponding estimated relative score �Eestimate�. In
practice, we found that all hits above threshold can be found
in the top 1%–5% of promising structures according to
Eestimate. This prescreening process resulted in 10–16 times
speed up of the threading process for sequence-structure
studies involving large databases.

VI. CONCLUSION

Using a 3�3�3 cubic lattice model, we compared the
distribution of energies from two different approaches: enu-
merating all the possible compact configurations of a given
sequence vs shuffling the sequence on a fixed native configu-
ration. We found that the energy distribution obtained from
these two approaches are similar and the latter one can be
well described by the REM approximation. For real proteins,
we found that REM calculations systematically underesti-
mate the mean value of the energy distribution if the energy
calculation involves gapped threading. However, the discrep-
ancy can be corrected empirically. These results can be used
to reduce substantially the computational efforts involve
in protein structure predictions using gapped-threading
methods.
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